HIGH PERFORMANCE BUILDING SUPPLY foursevenfive.com

Solutions. Simplified.

Where the blowerdoor is King

(and required by code since 10-3-16)

Residential: 3ACH50 (NYC and NYS)

Commercial: 0.04CFM/sf@75 envelope leakage (NYC for 25-50k SF bldgs)

Well designed Envelopes

Properly separating inside from outside

- Airtight
- Thermal Bridge Free
 Construction
- Continuous Insulation
- Great windows, properly installed
- etc

We can optimize and do better

More **robust**. More **resilient**. More **sustainable**. Higher **performance**.

Higher R – better airseal – more risk?

Molecular Contraction Methods and Methods

Poorly insulated walls are often heated dry.

Well built assemblies dry through vapor diffusion. (or they don't dry)

We Have Choices:

Structure: steel, concrete, wood, brick, etc

Insulations: cellulose, mineral wool, wood fiberboard fiberglass, sheepswool, hemp, etc,

Air & vapor control layers: sheathings, membranes vapor open, closed or variable

Connections: tapes, adhesives, gaskets

An evolution in high performance

- 1. Water control
- 2. Ever greater air control
- 3. More resilient vapor control
- 4. More robust thermal control
- More **predictable** and durable
- More sustainable and "green"

Air Control

Air Control

- Second only to water control.
- Disproportionately effects:
 - Indoor air quality: control the air to control the quality
 - Comfort: drafts are uncomfortable
 - Air transported wetting: a bigger liability than diffusion wetting
 - Heat loss/thermal bypass

Credit: Building Science Corporation

Thermal Bypass Diagrams

Thermal bypass describes heat loss that gets around intended thermal insulation, including: **windwashing**, **air infiltration**, and **convective loops**.

Thermal Performance of Leaky vs. Airtight enclosures:

Factor of 4.8 or a 79% reduction in performance

Fraunhofer Institute, Stuttgart Germany

Airtight Inside and Outside

Surround the insulation in airtightness.

All 6 sides

Now the insulation is protected for **optimum performance**

Your building can perform as designed

"Air-sealing both sides of the wall is more important than the fluffing of the insulation in the cavity."

Building Science Camp 2012

Why Inboard is Better

- Keeps conditioned air within the conditioned space.
- 2. Better protection against condensation risk.
- 3. Places the components of this most important control layer in a climate controlled location.
- 4. Leaks can often be more readily found and easier to repair.
- 5. The air control layer can/should double as a vapor control layer.

Stuff happens. So, **help the drying**.

Moursevenfive | www.foursevenfive.com | 800-995-6329

Vapor retarding on warm side

Why are we installing vapor dams?

Fear of water..

Reduce the intolerance.

Increase the resilience.

Moursevenfive | www.foursevenfive.com | 800-995-6329

Cold/Mixed Climate

Interior Vapor Control / IBC

1405.3 Vapor retarders.

Class I or II vapor retarders shall be provided on the interior side of frame walls in Zones 5, 6, 7, 8 and Marine 4. The appropriate zone shall be selected in accordance with Chapter 3 of the *International Energy*

Conservation Code.

Exceptions:

- 1. Basement walls.
- 2. Below-grade portion of any wall.
- 3. Construction where moisture or

its freezing will not damage the materials.

R702.7.1 Class III vapor retarders.

Class III vapor retarders shall be permitted where any one of the conditions in Table R702.7.1 is met.

- Vented cladding
- Insulated outboard sheathing (per climate zone requirements)

Credit: International Code Council, 2012

Air & Vapor Control Membranes

Motoursevenfive | www.foursevenfive.com | 800-995-6329

Vapor Intelligent Membrane

From vapor closed in winter (0.13) to vapor open when vapor drive is reversed (summer)>13

Factor 100x

Moursevenfive | www.foursevenfive.com | 800-995-6329

vapor Intelligent Membrane

Responds to the average adjacent humidity exposure

Unvented VB envelopes w/ Fiberglass

See blog post: Yes, Unvented Roof Assemblies Can Be Insulated With Fiberglass – A WUFI Post

Intelligent vapor variable Membrane Ideally suited for:

- 1. Meeting Code for Class II vapor retarders.
- 2. Assemblies with significant vapor retarding or vapor closed outboard layers.
- 3. Historic Masonry Retrofits
- 4. Fibrous Insulation
- 5. Highly insulated assemblies
- 6. Where increased drying reserves are desired

Historic Masonry retrofit

Airseals Dependent on Control Layer Continuity and durability

Durable connections are essential Modern approach Traditional

Many sealants dry, embrittle and fail over time

- PSA tape connection adhesives can move with materials
- 100 year performance

Wire and pipe penetration sealing

Allow for room to gasket properly

Credit: Ed May, BldgTYp

Window penetration sealing

seal both sides (for condensation and best installed PSI values) Exterior taped seal should be vapor open

.....and a *Service Cavity*

Verify air tightness

Before finishes go up (so you can fix leaks) & before project hand over (code compliance)

Thank you. @475Floris – <u>info@foursevenfive.com</u> Visit our booth or Brooklyn showroom

Questions?

