

Islands of Power – Microgrids Enabling Technology for Energy Resiliency Course Number: BE1534

Speakers: Amy McGuire, MA DOER Henry Misas, Bright Power

March 4, 2015

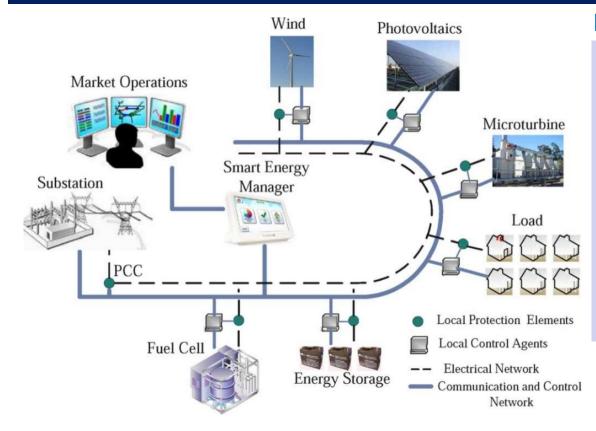
Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

The purpose of this course is to define the key characteristics of a microgrid, discuss the operational and functional attributes and benefits, offer specific examples of microgrids, and discuss the core drivers, considerations for implementing successful microgrid projects.

Learning Objectives


At the end of the this course, participants will be able to:

- 1. Define the key attributes of a microgrid and understand how microgrids relate to the overall energy grid
- 2. Understand the overall U.S. market for microgrids
- 3. Discuss examples of microgrid installations what benefits they are providing and why
- 4. Understand how and why different types of end use customers pursue and configure migrogrids

What is a Microgrid?

An integrated energy system network consisting of Distributed Energy Resources & multiple electrical loads and/or meters operating as a single, autonomous grid. Can operate either in parallel to or "islanded" from the existing utility power grid. Can interact with the utility's grid network in real time, and can optimize system performance and operational savings

Microgrid Value Propositions

- Reduced Cost Lower overall delivery costs and less exposure to price volatility
- Reliability Higher quality with less downtime
- Resiliency Security & independence
- Green Power Manage loads to coincide intermittent renewables / optimize efficiency
- Power System Better provisioning of services

Microgrid Definitions

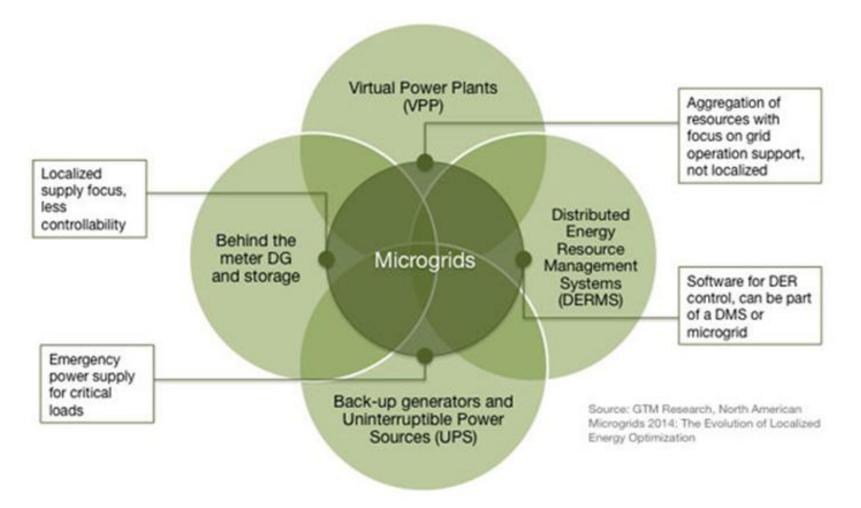
There is no common, agreed upon definition currently for a microgrid. Key stakeholders have defined similarly. Examples:

Uses the term "Distributed Resource Island Systems" – that

- Have Distributed Resources & load
- Can disconnect from the area Electric Power Systems (EPS)
- Are intentionally planned

Microgrid Definitions

A group of **interconnected loads and distributed-energy resources** within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can **connect and disconnect from the grid** to enable it to operate in both grid-connected or **islandmode**."


Microgrid Definitions

"A localized grouping of electricity sources and loads that normally operate connected to and synchronous with the traditional centralized grid (macrogrid), but can disconnect and function autonomously as physical and/or economic conditions dictate...have "islanding" capability and have the capability to coordinate and distribute energy supplied from one or more generation sources to a network of users in a spatially defined area."

How Does a Microgrid Intersect With Other Distributed Resources?

What are the Ownership Models for a Microgrid?

Physical Microgrid									
Util	ity	Non-Utility							
Owns Wires		Own Use							
Owns Generation	Non-utility generation		-	Multiple	Own Use w/ Some Mercha Merchant Sales Only				
Manages Controls	May/may not manage controls	One Owner		Owners	Merch	Only			
VERTICALLY INTEGRATED	UN- BUNDLED	CAMPUS 1	CAMPUS 2	JOINT OWNER- SHIP / CO-OP	CAMPUS 3	JOINT OWNER- SHIP / CO-OP	INDEPENDENT PROVIDER		
	-	-	Virtual	Microgri	id				
UTILITY AGGREGATOR					NON-UTILITY AGGREGATOR				

Source: NYSERDA

Microgrid Example: Santa Rita Jail (Alameda County, CA)

- Needs: Has 19 housing units for up to 4,000 inmates; the jail needs 3 MW of constant power
- Costs / Savings : An \$11.7 Million project saves the jail \$100,000 annually on energy costs. Funded through U.S.DOE, CEC PIER; CERTS Microgrid Demo
- Goal: Reduce the peak load on the local PG&E (utility) feeder by 15%
- Distributed Energy Installations:
 - ✓ 1.2 MW rooftop solar PV system
 - 1 MW fuel cell power plant with heat recovery for facility hot water and space heating
 - Five 2.3 kW wind turbines
 - Two 1.2 MW emergency backup diesel generators
 - 2 MW advanced energy storage system
 - ✓ 12 kV sub-cycle static disconnect switch
 - CERTS smart grid control logic

Microgrid Example: UC San Diego Campus

Equipment			
Prime movers	2 Solar Turbines Titan 130 13.5-MW combustion turbine generate (combined cycle)		
	1 Dresser-Rand 3-MW steam turbine		
Emissions control	Solar Turbines SoLoNO _x (dry low emissions)		
Chilled water	Murray-Tuthill steam-driven centrifugal chiller		
Thermal storage	3.8 million gallon cold water storage tower from PDM to meet peak cooling needs		
Operation			
NO _x emissions level	1.2 ppm annual average (permitted level is 2.5 ppm)		
Gross thermal efficiency	70%		
Net efficiency	66%		
Costs			
Capital cost	\$27 million		
Avoided electricity purchase costs per year	\$8,040,000		
Payback (years)	5		

The campus can provide 85% of its own energy needs ("islanded") and the remaining 15% of power provided by SDG&E (utility)

Overview Building Based Microgrids

- Buildings are building blocks of communities
- Goal: Power Resiliency that pays for itself
- Approach: One building at a time
- Technology
 - Solar PV, Batteries, Generators, Fuel Cells
- Developing Microgrid Projects
- Distributed building microgrids

Buildings of the Future: Smart Power Plants

THE HUDSON COMPANIES

MHG ARCHITECTS PC FXFOWLE ARCHITECTS LLP

Technology – Resilient Power

- Has backup power capability
- Has an attractive payback
- Is environmentally friendly

Combined Heat and Power

Energy Storage

Solar PV

Backup Generator

Technology – Integration and Smart Controls

- Managing various modes of operation
- Grid-tied vs Island modes
- Reliability and Redundancy

Critical Loads in Multifamily Buildings

- Elevators
- Water pumps
- Common area lighting
- Telecom
- Security cameras
- Servers / Computers
- Fire alarm

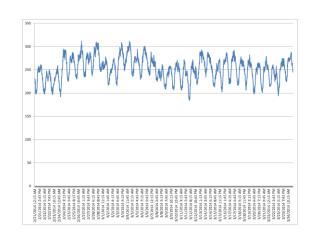
Water Booster Pumps

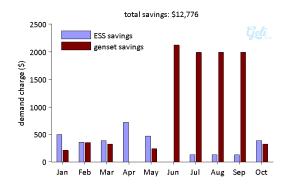
Grid Connection

Developing Microgrid Projects Business Model

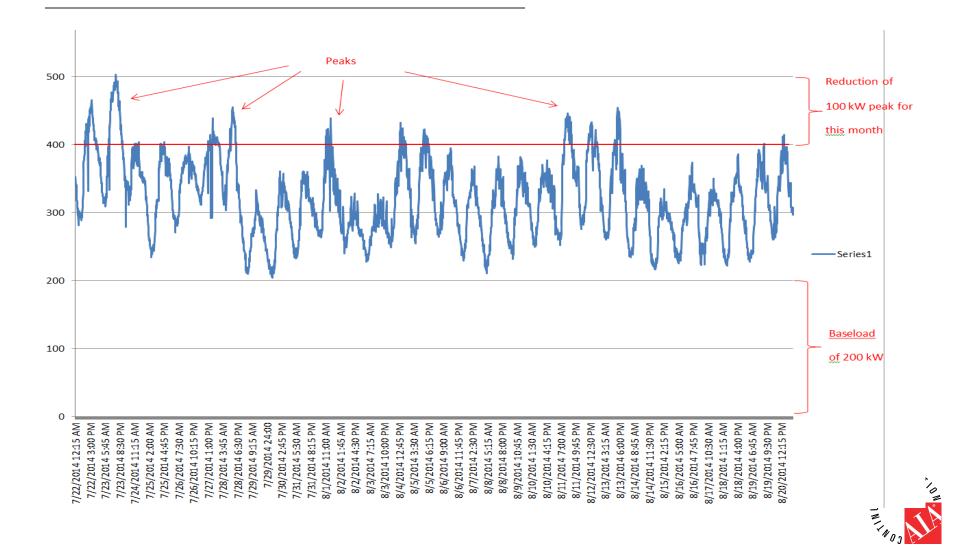
Building

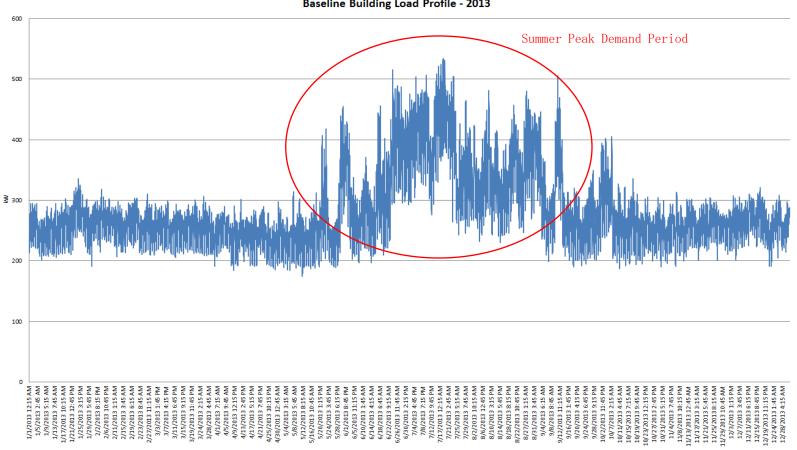
- Peak Shaving
- Backup Power
- Lower consumption
- Incentives


Utility


- Lower System Peaks
- Higher Reliability
- Active Network Management
- Less need for upgrades

Developing Microgrid Projects Feasibility Study


- Analysis
 - Utility Bills / Interval Data
 - Simulation / Modeling
 - System Sizing
 - Building Plan Review
- Technology Vendors
 - Approved products by AHJ's
 - Commercially available / Track record
- Project Specification for Pricing
 - Drawing Set / Book Specs



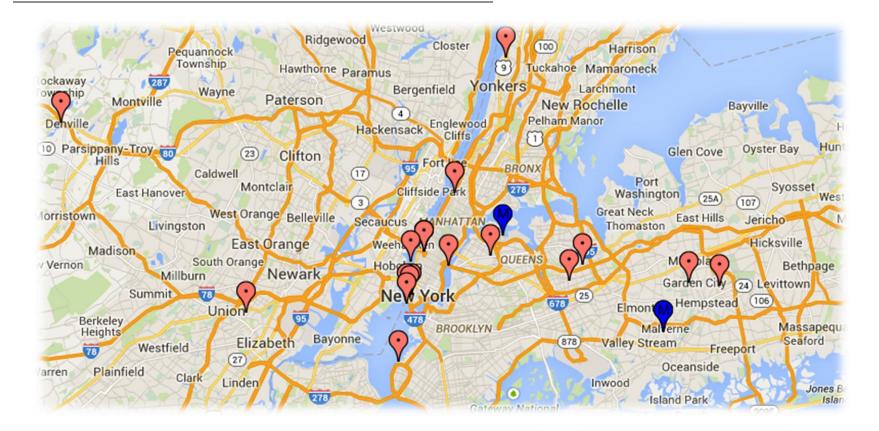
Developing Microgrid Projects Interval Data

Developing Microgrid Projects Interval Data

Baseline Building Load Profile - 2013

Resilient Solar Project Via Verde

- 66 kW Solar PV Array, built in 2012
- No energy storage
- Emergency Generator on site


CODA Core™ Tower (left),

Princeton Power 30 kW Inverter (middle),

Cummins Automatic Transfer Switch (right)

Grid-Tied Battery Projects in New York City

DOE GLOBAL ENERGY STORAGE DATABASE

Reforming the Energy Vision (REV) BQDM Overload Relief

Creating Resilient Communities

- Bringing together stakeholders
 - Building Owners
 - Utilities / Government
 - Project Developers
- Enabling Technology
 - Resiliency
 - Savings
 - Integrated
 - Smart

State Microgrid and Resiliency Programs

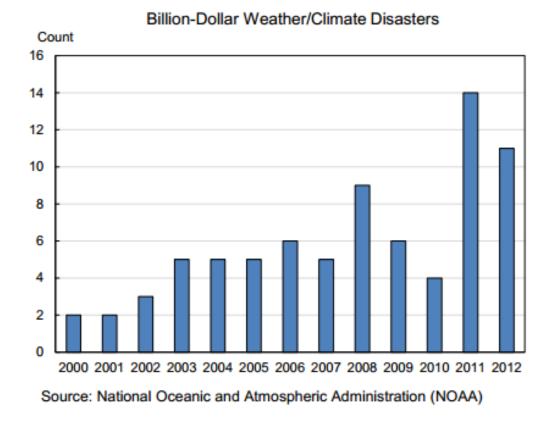
- Connecticut Department of Energy and Environmental Protection (CTDEEP) – Microgrids Program – 11 project grants, \$23 million awarded
- California Energy Commission (CEC) Demonstrating Secure, Reliable Microgrids and Grid-linked Electric Vehicles to Build Resilient, Low-Carbon Facilities and Communities – 10 project grants, \$27 million awarded
- Maryland Energy Administration Game Changer Awards Konterra Solar
 + Storage Microgrid \$250,000 awarded (total project cost of \$2.5 million)
- New York State Energy Research and Development Authority (NYSERDA)
 NY Prize Community Grid Competition Up to \$40 million available
- New Jersey Energy Resilience Bank (ERB) Up to \$200 million available

The Massachusetts Perspective Climate Preparedness: Top EEA Priority

"We need to do more to address the extreme threats from climate change...We must properly assess the risks and vulnerabilities, plan for them and ensure our emergency services have the ability to keep our residents safe. And we must take action to protect our natural habitats to maintain healthy communities."

Governor Deval Patrick

July 24th, 2013



(Photo: Eric Haynes/Governor's Office)

A Multi-Dimensional Strategy

- The Goal: Prepare for climate change and the increasing incidence of severe and costly weather events
- The Approach: Invest in new technologies to increase energy infrastructure resiliency and reliability
- The Climate Preparedness Initiatives: \$52M in climate change initiatives announced in January 2014

Coordinated Climate Preparedness Initiatives

- EEA with NEPGA Identifying resiliency efforts at generation facilities
- DPU Grid modernization
- CZM, \$10M Coastal infrastructure projects
- DCR with MassDOT, \$2M Assessing transportation vulnerability
- DOER with Governor's Military Task Force Evaluating clean energy opportunities at military bases
- DOER, \$40M Community Clean Energy Resiliency Initiative

Community Clean Energy Resiliency Initiative

- \$40 million municipal grant program
- Energy resiliency at critical facilities using clean energy technology
- Round 1 awards were available for Technical Assistance or Project Implementation
- Round 2 awards were available for Project Implementation

All Massachusetts municipalities were eligible

- Single municipality
- Joint applications by multiple municipalities
- Regional Planning Agencies
- Regional districts (water, wastewater, school, etc)
- Public/private partnerships

Eligible Critical Facilities

Critical facilities = "buildings or structures where loss of electrical service would result in disruption of a critical public safety life sustaining function"

Critical facilities could include:

- 1. Life safety resources
- 2. Lifeline resources
- 3. Community resources

Eligible Clean Energy Technologies

- Projects including:
 - Clean energy generation
 - Energy storage
 - Energy management systems
 - Technology used for DG operation in island mode
- Single building facilities or microgrids

Application Types: Technical Assistance

An overview:

- Available at no cost to awarded applicants
- Provided by a consulting team The Cadmus Group with MCFA and HOMER Energy
- Awarded applicants had the opportunity to use the resulting plan to apply for a follow-up round of project implementation funding

By the numbers:

- 27 applications received, July 15, 2014
- 27 awards made, July August 2014
- All 4 regions of the Commonwealth supported
- 43 stand-alone facilities analyzed
- 5 microgrid configurations analyzed
- 27 Technical Assistance reports completed October 2014

Technical Assistance Awards

Applicant	Facility	Technology	Applicant	Facility	Technology	
		Biomass heating/				
ABRSD	High School - Shelter	CHP/PV/Storage	Leverett	Elementary School - Shelter	PV/Battery/Biomass CHP	
ABRSD	RJ Grey Junior High School - Shelter	Biomass heating/ CHP/PV/Storage Lincoln-MAPC		Public safety building	PV/Battery	
Acton	Public safety building	PV/Battery	Medford	Medford City Hall	PV/Battery	
Acton	Department of Public Works	PV/Battery	Medford	Department of Public Works	PV/Battery	
Amherst/UMass	Microgrid: Wastewater treeatment plant, Fire Station, Champion Center	CHP/PV/Battery	Medford	Andrews School - Shelter	PV/Battery	
Andover	Water treatment plant	NG Turbines	Melrose	Microgrid: City Hall, Main St. Fire Station, Memorial Hall - Shelter	PV/Battery (solar canopy)	
Andover	Senior Center - Shelter	CHP/Absorption Chiller	New Bedford	High School - Shelter	CHP/PV/Storage	
Barnstable	Middle School - Shelter	СНР	New Bedford	City Yard	Interconnect w/ High School	
Beverly-MAPC	Regional emergency supply cache site	PV/Battery	New Bedford	Hillman Complex	CHP/PV/Storage	
Boston	Microgrid: Boston Medical Center	СНР	Newton	Waban Comms Facility	PV/Storage	
Boston	Madison Park High School - Shelter	CHP/PV/Battery	Newton	City Hall	PV/Storage	
Cambridge	Sulivan water treatment plant	PV/Battery	Northampton	Microgrid: High school - shelter, Department of Public Works, Hospital	CHP/PV/Battery	
Cambridge	Cambridge Rindge & Latin School	CHP/PV/Battery	Sandwich	High School - Shelter	CHP/PV/Battery	
Chicopee	Safety Complex	CHP/PV/Battery	Sandwich	Emergency Operations Center	PV/Battery	
Chicopee	Wastewater treeatment plant	CHP/PV/Battery	Saugus	Senior Center - shelter	PV/Battery	
CVEC	High School - Shelter	PV/Battery	Saugus	Public safety building	PV/Battery	
Falmouth	High School - Shelter	PV/Wind/Battery/CHP	Scituate	Public safety building	PV/Battery	
Greenfield	Wastewater treeatment plant	AD/CHP or Gas Turbine	Shirley	Police Department	Biomass/PV/Battery	
Greenfield	High School - Shelter	PV/Battery	Somerville	Public safety building	PV/Battery	
Holyoke	Dean School - Shelter	PV/Battery	Somerville	Early Childhood Center	CHP/PV/Battery	
Holyoke	Fire Station	PV/Battery	Somerville	Department of Public Works	PV/Battery	
Holyoke	Mt. Tom Tower	PV/Battery/Wind	Wayland-MAPC	Middle School - shelter	PV/Battery	
Lawrence	Water treatment plant	PV/Battery	West Boylston	Microgrid: 3x schools, DPW, Fire Dept., Library	Fuel Cell	
Leverett	Public safety building	PV/Battery	-			

Application Types: Project Implementation Round 1

An overview:

- Required to meet specific project threshold criteria
- Projects could be retrofit or new install

By the numbers:

- 9 applications received, July 15, 2014
- 6 awards totaling \$7.4m made September 25, 2014
- 4 applications to be reconsidered in the second round
- Deadline November 10, 2014
- 3 regions of the Commonwealth supported
- 8 stand-alone facilities considered
- I microgrid configuration awarded

Round 1 Project Implementation Awards

		Grant				
Applicant	Project Title	Amount	Brief Description	Factility(ies)	Technology(ies)	
Berkley and Taunton	Taunton/Berkley Community Microgrid	\$ 1,455,000	Community microgrid	 (1) Middle School - shelter (2) Emergency Services Building - Police and Fire (3) Community School - shelter (4) Municipal fueling station/pump (5) Police/fire radio repeater 	- Energy management system - Lithium Ion battery - Solar PV (existing) - Diesel generators (existing)	
Boston	Solar PV with Battery Storage for select Boston Community Centers	\$ 1,320,000	Solar and storage based islandable community shelters	 (1) Shelburne Community Center - shelter (2) Roslindale Community Center - shelter (3) Tobin Community Center - shelter (4) Curtis Hall Community Center - shelter 	- Solar PV - Battery storage	
Greater Lawrence Sanitary District	Organics to Energy Upgrade Project	\$ 611,000	Islandable and black start capable self-sustaining wastewater treatment facility	(1) Wastewater treatment facility	- Biogas storage - Combined heat and power system - Anaerobic digestion (existing)	
Northampton	Batteries and PV Islanding Capability for Fire HQ	\$ 525,401	Solar and storage based islandable fire station, that incorporates existing backup generation for further resiliency	(1) Northampton Fire Department	- Solar PV - Battery storage - Diesel generators (existing)	
South Essex Sewerage District	Combined Heat and Power Facility	\$ 700,000	Islandable and black start capable combined heat and power facility at wastewater treatment facility	(1) Wastewater treatment facility	- Combined heat and power system	
Springfield	Baystate Health Cogeneration Project	\$ 2,790,099	Islandable and black start capable combined heat and power facility at regional hospital	(1) Baystate Health - hospital	- Combined heat and power system	
Total		\$ 7,401,500				

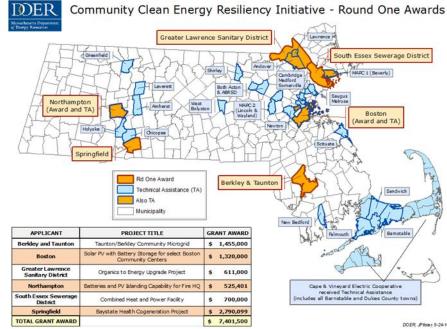
Application Types: Project Implementation Round 2

An overview:

- Applicants were required to either:
 - have received first round technical assistance ,or
 - be submitting revisions to first round project implementation applications

By the numbers:

- 13 applications received, November 10, 2014
- 13 awards totaling \$18.4m made December 29, 2014
- All 4 regions of the Commonwealth supported
- 13 stand-alone facilities awarded
- 3 microgrid configurations awarded


Round 2 Project Implementation Awards

Applicant	Project Title	Grant Amount	Applicant	Project Title	Grant Amount	
Barnstable	Cogeneration Plant at Barnstable Intermediate School	\$ 406,000	Holyoke	Resiliency at Holyoke Facilities - Fire HQ, Mt. Tom Tower, Dean School	\$	1,013,794
Boston	BMC Menino Campus CHP Plant Project	\$ 3,680,000	MAPC - Beverly	Energy Resiliency at Beverly Regional Cache Site	\$	526,180
Cambridge	Cambridge Water Supply Resilience	\$ 851,868	MAPC - Wayland	The MAPC Solar Resiliency Project	\$	264,627
Chelmsford	McCarthy Middle School, Emergency Power Generation	\$ 74,941	Medford	Medford Resiliency Project	\$	833,366
Cape & Vineyard Electric Cooperative	Dennis-Yarmouth High School Regional Shelter	\$ 1,479,193	Northampton	Micro-grid with island- able PV at Smith Vocational and Agricultural High School, Northampton DPW and Cooley Dickinson Hospital	\$	3,078,960
Greater Lawrence Sanitary District	Organics to Energy	\$ 4,389,000	Sterling	Implementing a Resiliency Plan through Clean Storage for a Municipal Microgrid	\$	1,463,194
Greenfield	Greenfield Resiliency Plan for High School	\$ 367,310	Total		\$	18,428,433

Program Achievements

- Geographic diversity among applicants
- Wide range of facilities and technologies considered
- Single facility projects and microgrid configurations
- Projects demonstrating daily benefits and ability to island, operate and provide resilient support during an outage

Lessons Learned

- Learn from and share with as many people as possible
 - Throughout program development and implementation
- Develop clear goals and program design
 - Prioritized critical facilities
 - Clean energy technology
 - Technical assistance support and/or direct project implementation
- Provide as much information as possible to applicants
 - > Webinars
 - Extensive Q&A
- Technical assistance where needed
 - Get from interested to ready to apply for funding
- Flexibility in project implementation
 - Phased contract approach
 - Milestone funding disbursements

Speaker Contact Information

Amy McGuire

Henry Misas

Massachusetts Department of Energy Resources

100 Cambridge Street, Suite 1020, Boston, MA 02114 617.626.7380

Amy.McGuire@State.MA.US

Bright Power, Inc.

11 Hanover Square, 21st floor, New York, NY 10005 646.780.5529 hmisas@brightpower.com

This concludes The American Institute of Architects Continuing Education Systems Course

