

Building Science Puzzles

How Heat & Moisture Moves Through Homes

Premises

- Things get wet, heat dries them out.
- Energy efficiency measures reduce heat loss.
- Energy & moisture must be managed with equal intensity.
- Follow the water.

How many ways can a building assembly get wet?

- Bulk water
- Wicking
- Air-transported moisture
- Diffusion

- leak, inside or out
- capillarity of porous materials
- air leak
- interior-exterior gradients, created by space conditioning & climate

How many ways can a building assembly dry?

- Free drainage
- Convective
- Diffusion

- Space
- Pathway and driving force
- Evaporation

Mold/Rot Basics

- Temperature/Food/Water
- Molds (spores) are everywhere, all the time...
- They like the same temperatures we do...
- They like many of the materials out of which we like to build...
- Mold generally shows up at 19% MC or higher
- Rot requires 25- 28% MC
- The easiest/most effective approach to control mold/rot is, generally, managing moisture.

Sources - Household Moisture

Source: Minnesota Extension Service

Source	Quantity (pints)
Showering	.5 (5 - min shower)
Clothes drying	4 - 6/load
Cooking (dinner)	1.2 (+1.5 gas)
5 house plants	1/day
1 cord "green" wood	600 - 800/season
4 people	.5/hour
Building materials	6 - 17/day
Ground moisture	0 - 100/day

Puzzle List (approximate "number of pieces")

- Interior mold mitigation
- Attic mold in saltbox (5A)
- Basement moisture in historic municipal building DER (5A)
- Closet mold in tenant cottage (6)
- Water in cathedral ceiling SIP timber frame (5A)

- **500 piece**
- 500 piece
- 750 piece
- 1000 piece
- 1000 piece

Ignore the client; do the "edges" first...

- Existing info
- "Walk" the exterior (bulk water)
- Foundation (bulk & capillary)
- Assess air leakage
- Interior RH and MC

Puzzle 1 (Zone 6) – Insurance co. mitigated kitchen mold keeps coming back...

View as you drive up...

Pieces

- Mold insurance claim
- Mold mitigated once
- Building scientists called in
- Structure at bottom of steep hill with lake on opposite side
- Insurance inspector "baffled"
 by mold returning; did not know what sort of foundation the older part of home had

Crawlspace inspection...

Key Takeaways/Lessons Learned

- Ignore the client; do the "edges" first...
- Existing info
- "Walk" the exterior (bulk water)
- Foundation (bulk & capillary)
- Follow the water...

Puzzle 2 (Zone 5b) – mold in attic

Mold in the Attic

North side

Classic "Saltbox"

Pieces

- Mold in attic
- Home inspector: inadequate attic venting
- HI "solution:" add mechanical attic exhaust

Original diagnosis: inadequate attic ventilation

Only on the North side

Mold in the Attic

In the knee wall

Patterns in the Attic Mold?

Only on the North side

Key Takeaways/Lessons Learned

- Patterns of moisture expression are key
- Back-up "arm-chair" building science with onsite full confirmation
- Follow the water...

Puzzle 3 (Zone 5b) – DER with damp basement

DER of 1st & 2nd floor office space but concerns with damp basement

Pieces

- Interior gut of wood-frame building to significantly improve energy efficiency
- Engineer on project encouraged hygrothermal building assessment
- Significant moisture issue(s) in basement

Moisture data from basement

- Thermastor Santa Fe DEH set on 70%
- Hygrometer readings: 69F, 70% RH
- 1st floor framing in direct contact with brick foundation; MC readings, generally: 12 – 13%
- 2 spots with 19% MC

Equilibrium moisture content (EMC)

EMC Calculator		
Required Data Entry		
Temperature (F)	69 Degrees	S
Relative. Humidity	70 Percent	
EMC	13.1 Percent	
Calculate Clear Values Moisture Detection System Moisture Content, RH, T, C02 wireless, data-log, wired systems • •		

Bulk water manage 2 "spots"

Re-building the wood siding water table with rigid insulation

Detail from Copper Development Association Inc.

Key Takeaways/Lessons Learned

- Correlate wood moisture content with RH, if you can
- Maintain or improve moisture-energy balance
- Warm suspect elements when you can

Puzzle 4: rental cottage (Zone 6) – mold in closet

Pieces

- Crawlspace foundation: vented, unconditioned
- 4 years old
- One story open floor plan with loft
- 600 sq. ft. two adult occupants
- Cathedral ceiling
- Standard wood-framed construction
- Airtightness not known
- Moisture/mold issues in closet/ceiling

Key Takeaways/Lessons Learned

- Assess the whole building (ignore the client...until they "get it")
- Occupant density matters
- Assess and manage all sources of moisture
- Ongoing monitoring may be required

Puzzle 5 (Zone 5b) – SIP timber frame roof/attic moisture

Cathedral ceiling moisture issues, inside...

...and out..

Pieces

- SIP timberframe 1988
- Story and a half cathedral 28 by 32
- Knee wall attic space (over front porch)
- Roof assembly
 - Asphalt shingles
 - 30# felt
 - Nailbase EPS SIP
 - 6-mil poly
 - Structural/finish 2 by 6 T&G v-groove boards
 - 4-foot on center roof timbers

Pieces (cont'd)

- Twenty years of moisture/ice on windows
- 5-year old re-roof of south side (driven by wintertime moisture damage at skylights)
- 5-year old HRV system (moisture control)
- Tight house: 500 cfm50
- North side, last year: moisture in attic space, lots of it in November – tried to manage with gable end venting
- Invasive inspection of north side: dry assembly, sound, plywood "moist"

More info...BPI audit

Why north side eave moisture now?

- Nailbase SIP butted/foamed
- Cyclical contraction-expansion finally broke the seal
- Air leakage in this unvented, double-vapor barrier assembly results in wintertime condensation running to eaves (?)

Solutions?

- Rebuild roof with venting and continuous air barrier
- Manage wintertime air leakage with pressure?

Countering stack effect

[SEE STACK DEMO HERE]

Countering stack effect

- Negative pressure created by re-balancing the HRV?
- Installing a hi-efficiency exhaust fan?
- Increase effectiveness of negative pressure approach by air sealing what you can, particularly the problem areas easy to get to: gable end cathedrals...

Job site data on pressures

Manometer Readings Dwelling

Date	Temperature (F)			Exhaust Fan Setting (#s in Pascals)				Relative
	Interior	Exterior	Difference	High	Medium	Low	Off	Humidity
11/23/14	66	56	10	(6.6)	(5.6)	(3.8)	0.7	18%
11/6/14	64	49	15	(6.5)	(5.5)	(3.4)	1.2	43%
11/9/14	62	42	20	(6.1)	(5.1)	(3.0)	1.4	36%
10/31/14	63	38	25	(5.7)	(4.6)	(2.5)	1.6	46%
11/3/14	61	31	30	(5.2)	(4.0)	(2.1)	1.8	34%
.11/15/2014	61	26	35	(4.6)	(3.5)	(1.9)	2.0	27%
11/18/14	60	20	40	(4.0)	(3.0)	(1.5)	2.4	18%

Any unintended consequences?

- What about radon in all this?
- House closed 3-day test, HRV off = 8.4 pC/I
- House closed 3-day test, HRV on = 2.4
- Cold weather test with negative pressure = 2.8
Key Takeaways/Lessons Learned

- Chronology is always important
- Takes an unusual client to conduct "distancedirected" investigations
- Everything is connected to everything else...

Home » Conferences » BuildingEnergy 15

BuildingEnergy 15

Building Science Puzzles

How Heat & Moisture Moves Through Homes

