

CONFERENCE + TRADE SHOW FOR RENEWABLE ENERGY AND GREEN BUILDING PROFESSIONALS

H2 Uh Oh: Moisture Risks and How to Manage Them

Terry Brennan Camroden Associates, Inc. 315-336-7955 terry@camroden.com

Consider water

http://www.epa.gov/iaq/pdfs/m oisture-control.pdf

Who has had to solve a moisture problem in buildings?

"Start where the client's at" – Florence Hollis

Casework: A Psychosocial Therapy

Remember who you are designing, building or maintaining for

Avoiding moisture and mold problems

Developed: 2004 - 2013 Released: February 2014

SEPA State Based

Moisture Control Guidance for Building Design, Construction and Maintenance

Inter Air Quality (100)

Site Enclosure Mechanical Systems

Foreword: How to Use this Guidance

Acknowledgements

Chapter 1

loisture Control In Buildings
Introduction
Health Implications of Dampness in Buildings
Moisture Damage in Buildings
Moisture Problems are Expensive
How Water Causes Problems in Buildings
Moisture Control Principles for Design
Moisture Control Principle #1: Control Liquid Water
Moisture Control Principle #2: Manage Condensation
Moisture Control Principle #3: Use Moisture-Tolerant Materials
he Basics Of Water Behavior

Chapter 2

E	lesigning for Moisture Control			
	Designing Effective Moisture Controls			
	Building Commissioning			
	Who Should Read this Chapter			
(Site Drainage			
	Foundations			
	Walls			
	Roof And Ceiling Assemblies			
	Plumbing Systems			
	HVAC Systems			

Chapter 3

Constructing to	Prevent Moisture Problems
Introduction	1
Pre-Constru	ction Planning
Site Drainag	ge Construction
Foundation	Construction
Wall Constru	uction
Roof and Ce	eiling Assembly Construction
Plumbing S	ystem Installation
HVAC Syste	m Installation

Chapter 4

Operating and Maintaining Mois	sture-Controlled Environments
Introduction	
Site Drainage Maintenance	
Foundation Maintenance	
Wall Maintenance	
Roof and Ceiling Assembly	Maintenance
Plumbing System Operation	and Maintenance
HVAC System Operation and	d Maintenance

Appendix A - The "Pen Test".

Appendix B - Roof Inspection Checklist...

Appendix C - Testing Moisture During Construction.

Appendix D - Air Pressure Mapping

Appendix E - HVAC Inspection Checklist

Appendix F - Site Drainage Maintenance

Appendix G - Dampness & Mold Evaluation

Glossary.

¹³ <u>http://www.epa.gov/iaq/moisture</u>

Holistic Design Team

Architects Engineers Builders Owners Buildings and grounds Occupants LEED consultant

Commissioning?

"a quality-oriented process for achieving, verifying, and documenting that the performance of facilities, systems, and assemblies meets defined objectives and criteria" - The Commissioning Process ASHRAE Guideline 0

"The role of standards and guidelines. Are they a substitute for understanding a problem or a protection against the consequences of ignorance" - *Tim Padfield*

A few thoughts on the OPR:

"Start where the client's at" - Florence Hollis Casework: A Psychosocial Therapy
People expect their building to work

Indoor Climate

Thermal comfort zone for people: Air temperature: 70 degrees F to 85 degrees F Air relative humidity: 20% to 80% (at 70 F, 30) - 63 F dew points) Surface temperatures in buildings vary In swimming pools or spas? In museum or archival storage? In chip manufacturing plant? In lithium battery plant?

To Avoid Problems the Enclosure Must:

Manage the flow of rainwater/groundwater
Manage the flow of air
Manage the flow of heat (and sunlight)
Manage the flow of water vapor
Manage the migration of creatures

Tracing rainwater protection from the center of the roof to the center of the foundation

Tracing continuity of insulation from the center of the roof to the bottom of the foundation.

Tracing continuity of air barriers from the center of the roof to the center of the foundation floor.

Avoiding Condensation

Enclosure:

- Make it airtight
- Put all the materials with low perm (perm less than 2) on one side or the other of cavity
- Make one of the low materials at least two inches foam board

AC and ventilation:

 Indoor dewpoint 55 F or less, except in buildings without air conditioning
 Ventilation dries an air conditioned building when OA dewpoint is <55 F What goes into the specs and drawings?

Moisture control
Air barriers
Insulation
Condensation control
Verification (Enclosure Commissioning?)

Moisture Control

How important is moisture control to the owner, to you? Provide moisture control detail in construction documents: Building During construction **0&M** Verification, testing and remedies

Manage moisture at the site

100

Site drainage

Moisture Guidance from U.S. EPA

Engineering solution for picking a poor site

MORE REALISTIC F.E.M.A. GUIDELINES FOR REBUILDING IN NEW ORLEANS

Drain the site...

Drain the rain...

From roofs

Most roof leaks are at the penetrations and edges

Cheap but effective rain protection for parapet

From walls

Where roofs / run into walls /

Retrofit through wall flashing - \$150 -\$400/foot

No. of Concession, Name

7

-

-

Drain the windows The old way – carved stone pan flashing

Pan Sill Flashing

Αι

Self adhering membrane makes pan sill flashing and extends air barrier to the window frame

Drain the foundation

100

-

This third century Roman ceramic tile floor has lasted for nearly 2000 years.

-

Moisture Encounter Plus Scale 1. Vood, Timber Scale 2. Drywall, Roofing Scale 3. Plaster, Brick

Non-Destructive Moisture Detection

SCALE

HOLD

Camroden Associates, Inc. 7240 East Carter Road Westmoreland, NY 13490 315 336-7955

Drain the basement?

Basement Rules

Drainage and capillary break No paper or wood products touch foundation materials Keep warm summer air from contact with earth chilled surfaces using foam insulation Put a drain in the floor

Retrofit rainwater protection

Capillary suction wicks water through porous materials.

Capillary Break

Be careful finishing below grade space

Crawlspace guidance

- Make the crawlspace part of the inside •Keep water out
 - use perimeter drainage to keep out rainwater and ground water
 - use a vapor barrier to prevent water vapor entry from the soil
 - repair plumbing leaks
- If crawlspace is dry seal vents
- In cold climates insulate the crawlspace walls
- Exhaust air from beneath groundcover to prevent entry of soil air laden with radon or other contaminants

Make the crawlspace part of the outside and really vent it

And don't spray the building...

Ice Dams

Snow insulates sheathing from cold outdoor air; if sheathing reaches 33 degrees F snow melts

and refreezes at cold eave

Attic heated by

- warm air leaking into attic
- heat and air flow from recessed lights
- air leaking from heat ducts
- conduction through poor insulation on ceiling or heat ducts

Outdoor temperature below freezing but not so cold that attic gets too cold (around 20 degrees F)

Condensation humidity and chilled surfaces

